
09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 1/15

sp-dev-training-spfx-react-fabric / Lab.md

 andrewconnell add demos & lab

ad170a8 on 14 Mar

1 contributor

 master Branch: Find file Copy path

474 lines (340 sloc) 21 KB

Using React and Office UI Fabric React
Components
In this lab you work with React and the the SharePoint Framework (SPFx) to extend the
user interface with the React web framework.

In this lab

Creating React Web Parts
Leveraging Fabric React
Dynamic React Components

Prerequisites

To complete this lab, you need the following:

Office 365 tenancy
If you do not have one, you obtain one (for free) by signing up to the Office
365 Developer Program.

Local SharePoint Framework development environment installed and configured
Refer to the SharePoint Framework documentation, specifically the Getting
Started > Set up development environment for the most current steps

Exercise 1: Creating React Web Parts

Raw Blame History

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric
https://github.com/andrewconnell
https://github.com/andrewconnell
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/commit/ad170a80f2794a229cef7a165d8a49501836f89f
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/commit/ad170a80f2794a229cef7a165d8a49501836f89f
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/find/master
https://developer.microsoft.com/office/dev-program
https://docs.microsoft.com/sharepoint/dev/spfx/set-up-your-development-environment
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/raw/master/Lab.md
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blame/master/Lab.md
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/commits/master/Lab.md

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 2/15

In this exercise you will create a SharePoint Framework client-side web part that
leverages the React web framework.

1. Open a command prompt and change to the folder where you want to create the
project.

2. Run the SharePoint Yeoman generator by executing the following command:

yo @microsoft/sharepoint

Use the following to complete the prompt that is displayed:

What is your solution name?: ReactWebPartDemo
Which baseline packages do you want to target for your component(s)?:
SharePoint Online only (latest)
Where do you want to place the files?: Use the current folder
Do you want to allow the tenant admin the choice of being able to deploy
the solution to all sites immediately without running any feature
deployment or adding apps in sites?: No
Which type of client-side component to create?: WebPart
What is your Web part name?: React WebPart Demo
What is your Web part description?: React WebPart Demo description
Which framework would you like to use?: React

After provisioning the folders required for the project, the generator will install all
the dependency packages using NPM.

3. When NPM completes downloading all dependencies, run the project by executing
the following command:

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/createProject.png

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 3/15

gulp serve

4. The SharePoint Framework's gulp serve task will build the project, start a local web
server and launch a browser open to the SharePoint Workbench:

5. Select the web part icon button to open the list of available web parts:

6. Select the HelloWorld web part:

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex01-testing-01.png
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex01-testing-02.png

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 4/15

Examine the Web Part code

Before modifying the web part code, take a minute to see how this project differs from
a SPFx project that does not utilize React.

1. Open the package.json file in the root of the project

Notice the presence of a few extra packages in the dependencies section. The
react & react-dom packages contain the core React web framework and the

bridge between React & the DOM while @types/react & @types/react-dom
contain the TypeScript type declarations for the libraries.

2. Open the web part in the
./src/webparts/reactWebPartDemo/ReactWebPartDemoWebPart.ts file.

Notice the main difference in this web part from one that does not leverage the
React Framework is in the render() method. Instead of writing HTML out, it first
creates a new React component and then uses the ReactDom.render() method to
render the component into the div for the web part.

The React component that is created is the ReactWebPartDemo.

3. Open the React component:
./src/webparts/reactWebPartDemo/components/ReactWebPartDemo.tsx.

This file contains a class declaration that extents the base React.Component
abstract class. It contains a single method, render() , that serves the same purpose
as the render() method in the web part: it renders the control out.

Because we are using the TypeScript Extended (*.tsx) language and syntax, well-
formed HTML can be directly returned to the caller. The caller is the React web
framework.

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex01-testing-03.png

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 5/15

This component has a single public property: description . This is defined as an
interface in the
./src/webparts/reactWebPartDemo/components/IReactWebPartDemoProps.ts
file.

Now that you understand how a React project is structured, add some data and a child
component to the web part.

Update the web part code

Update the web part to show a list of colors using a child React component.

1. Create a new file in the ./src/webparts/reactWebPartDemo folder named IColor.ts.

Add the following code to the file. This will act as an interface to our new object
type:

export interface IColor {
 id: number;
 title: string;
}

2. Create a new React component that will show a list of colors provided to it as a
public property:

i. Create a new file ColorList.tsx in the
./src/webparts/reactWebPartDemo/components.

ii. Add the following code to the ColorList.tsx file. This creates an public interface
for the component's public signature and creates the core React component:

import * as React from 'react';
import { IColor } from '../IColor';

export interface IColorListProps {
 colors: IColor[];
}

export class ColorList extends React.Component<IColorListProps, {}> {
 public render(): React.ReactElement<IColorListProps> {
 return ();
 }
}

iii. Update the render() method in the ColorList component with the
following. This will write out an unordered list of colors that have been
provided as a property when the component is added to the page:

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 6/15

public render(): React.ReactElement<IColorListProps> {
 return (

 {
 this.props.colors.map(colorItem => (
 { colorItem.title }
))
 }

);
}

3. With a React component created that will display a list of colors, the next step is to
use it. Do this by updating the default React component created by the SPFx
Yeoman generator:

i. Open the
./src/webparts/reactWebPartDemo/components/ReactWebPartDemo.tsx
file.

ii. Add the following import statements after the existing import statements.
These will add references to the new files and objects you previously created:

import { IColor } from "../IColor";
import { ColorList, IColorListProps } from "./ColorList";

iii. Add a new private member to the ReactWebPartDemo class that contains a
static collection of colors:

private _colors: IColor[] = [
 { id: 1, title: 'red' },
 { id: 2, title: 'blue' },
 { id: 3, title: 'green' }
];

iv. Next, update the ReactWebPartDemo 's render() method to use the new React
component you previously created. The only important line here is the
<ColorList> component reference.

Notice the colors public property on the component is bound to the private
array of colors you created above:

public render(): React.ReactElement<IReactWebPartDemoProps> {
 return (
 <div className={ styles.reactWebPartDemo }>
 <div className={ styles.container }>

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 7/15

4. Test the project:

i. Start the local web server using the provided gulp serve task:

gulp serve

ii. The SharePoint Framework's gulp serve task will build the project, start a local
web server and launch a browser open to the local SharePoint Workbench.

iii. Add the web part to the workbench. Notice our list of three colors is rendered
up exactly as we would expect.

iv. Close the browser and stop the local web server by pressing CTRL + C in the
command prompt.

Exercise 2: Leveraging Fabric React

In this exercise, you will update the existing React-based SPFx web part to leverage a
few controls from the Fabric React controls.

This project uses the final project from the previous exercise as the starting point.
A copy of the final project from the previous exercise can be found in the
./Demos/01-webpart folder.

 <div className={ styles.row }>
 <div className={ styles.column }>
 Welcome to SharePoint + Rea
 <ColorList colors={this._colors} />
 </div>
 </div>
 </div>
 </div>
);
}

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex01-testing-04.png
https://developer.microsoft.com/fabric

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 8/15

1. Update the project to follow the recommended guidance from Microsoft when
using Fabric React. This involves removing the reference to the Fabric Core package
& changing the existing SCSS reference.

i. From the command prompt, execute the following command from the root of
your project to remove the Fabric Core package:

npm uninstall @microsoft/sp-office-ui-fabric-core --save

ii. Open the file
./src/webparts/reactWebPartDemo/components/ReactWebpartDemo.modul
e.scss.

iii. Change the first line from...

... to the following:

@import '~office-ui-fabric-react/dist/sass/_References.scss';

2. Update the existing ColorList React component to leverage Fabric React controls.

i. Open the ./src/webparts/reactWebPartDemo/components/ColorList.tsx file.

ii. Add the following import statements to the top of the file. These will enable
adding a DefaultButton and List control to the component:

import { List } from 'office-ui-fabric-react/lib/List';
import { DefaultButton } from 'office-ui-fabric-react/lib/Button';

iii. Update the render() method within the ColorList class to the following
code:

public render(): React.ReactElement<IColorListProps> {
 return (
 <div>
 <List items={ this.props.colors }
 onRenderCell={ this._onRenderListCell }
 />
 </div>
);
}

@import '~@microsoft/sp-office-ui-fabric-core/dist/sass/SPFabricCore.scs

https://docs.microsoft.com/en-us/sharepoint/dev/spfx/office-ui-fabric-integration#office-ui-fabric-react

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 9/15

iv. Handle the rendering of each item in the list by adding the following method
to the ColorList class:

v. Next, add an event handler for when the button is selected:

private _onButtonClick(color:IColor): void {
 console.log('clicked delete for color', color);
}

3. Test the project:

i. Start the local web server using the provided gulp serve task:

gulp serve

ii. The SharePoint Framework's gulp serve task will build the project, start a local
web server and launch a browser open to the local SharePoint Workbench.

iii. Add the web part to the workbench. Notice our list of three colors is rendered
up exactly as we would expect.

private _onRenderListCell = (color: IColor, index: number | undefined):
 return (
 <div>
 { color.title }

 <DefaultButton text="delete"
 data={ color.id }
 onClick={ () => this._onButtonClick(color) }
 />
 </div>
);
}

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex02-testing-01.png

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 10/15

iv. Select the delete button for one of the colors & examine the browser's
JavaScript console, usually located in the browser's developer tools. You
should see a log message displayed each time a button is selected:

v. Close the browser and stop the local web server by pressing CTRL + C in the
command prompt.

Exercise 3: Dynamic React Components

In this exercise, you will update the existing React-based SPFx web part to make it more
dynamic by introducing state and data driven from a SharePoint list.

This project uses the final project from the previous exercise as the starting point.
A copy of the final project from the previous exercise can be found in the
./Demos/02-fabricreact folder.

1. Create a new SharePoint list within an existing SharePoint site collection. In this lab,
it is assumed the list is named Colors and has a single Title field. Populate this list
with some colors as shown in the following figure:

2. Update the SharePoint Framework web part to provide additional inputs to the
React component:

i. Open the
./src/webparts/reactWebPartDemo/ReactWeBPartDemoWebPart.ts file.

ii. Locate the render() method, and update the code that creates an instance of
the React element. This code will add two additional properties to the React
web part: spHttpClient & currentSiteUrl .

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex02-testing-02.png
https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex03-newList.png

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 11/15

3. Update the React component's public properties by updating it's interface:

i. Open the
./src/webparts/reactWebpartDemo/components/IReactWebPartDemoProps.
ts.

ii. Add the following import statement to the top of the file:

import { SPHttpClient } from "@microsoft/sp-http";

iii. Update the IReactWebPartDemoProps interface to add the two new public
properties to the component:

export interface IReactWebPartDemoProps {
 description: string;
 spHttpClient: SPHttpClient;
 currentSiteUrl: string;
}

4. Add a new interface to represent the component's state.

i. Create a new file IReactWebPartDemoState.ts in the folder
./src/webparts/reactWebPartDemo/components.

ii. Add the following code to the file:

import { IColor } from '../IColor';

export interface IReactWebPartDemoState {
 colors: IColor[];
}

5. Update the ColorList React component.

i. Locate and open the file
./src/webparts/reactWebPartDemo/components/ColorList.tsx.

const element: React.ReactElement<IReactWebPartDemoProps > = React.creat
 ReactWebPartDemo,
 {
 description: this.properties.description,
 spHttpClient: this.context.spHttpClient,
 currentSiteUrl: this.context.pageContext.web.absoluteUrl
 }
);

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 12/15

ii. Add the following type to the file, after the existing import statements. This
will define a new callback type that will represent a new event exposed by this
component:

export type RemoveColorCallback = (color: IColor) => void;

iii. Add a new event as a public property to the component by updating the
existing IColorListProps interface. Add the following code to the interface:

onRemoveColor: RemoveColorCallback;

iv. Locate the existing _onButtonClick method. Currently this method just writes
to the browser's JavaScript console. Change the contents to raise the new
public event, passing in the color that the button represented:

private _onButtonClick(color:IColor): void {
 this.props.onRemoveColor(color);
}

6. Update the ReactWebPartDemo React component:

i. Locate and open the file
./src/webparts/reactWebPartDemo/components/ReactWebPartDemo.tsx.

ii. Add the following import statements to the top of the file:

iii. Update the React component to define it's state interface.

a. Locate the class definition for the ReactWebPartDemo. Notice the end of
the line contains a {} as the second parameter for the React.Component
base class:

This second parameter is how you define the interface for the state of the
component. Update this to use the new interface you previously created:
IReactWebPartDemoState .

import { IReactWebPartDemoState } from './IReactWebPartDemoState';
import { SPHttpClient, SPHttpClientResponse } from '@microsoft/sp-http';

export default class ReactWebPartDemo extends React.Component<IReact

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 13/15

iv. Initialize the state of the component by defining a constructor that sets the
default component state:

constructor(props: IReactWebPartDemoProps) {
 super(props);
 this.state = { colors: [] };
}

v. Add the following method ot the ReactWebPartDemo class. This will retrieve
an array of items from the previously created SharePoint list using the
SharePoint REST API:

vi. Update the React component's lifecycle by retrieving data from the SharePoint
list and setting the component's state when the component is loaded on the
page. Setting the state will trigger React to re-render the component,
displaying the retrieved data.

a. Add the following method to the ReactWebPartDemo class:

public componentDidMount(): void {
 this.getColorsFromSpList()
 .then((spListItemColors: IColor[]) => {

export default class ReactWebPartDemo extends React.Component<IReact

private getColorsFromSpList(): Promise<IColor[]> {
 return new Promise<IColor[]>((resolve, reject) => {
 const endpoint: string = `${this.props.currentSiteUrl}/_api/lists/get
 this.props.spHttpClient.get(endpoint, SPHttpClient.configurations.v1
 .then((response: SPHttpClientResponse) => {
 return response.json();
 })
 .then((jsonResponse: any) => {
 let spListItemColors: IColor[] = [];
 for (let index = 0; index < jsonResponse.value.length; index++)
 spListItemColors.push({
 id: jsonResponse.value[index].Id,
 title: jsonResponse.value[index].Title
 });

 resolve(spListItemColors);
 }
 });
 });
}

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 14/15

 this.setState({ colors: spListItemColors });
 });
}

vii. Update the render() method in the ReactWebPartDemo to do two things:
first, change the binding to instead of using the static collection of colors, use
the colors from the new state object that is updated by the lifecycle event
componentDidMount() and then, attach to an event on the custom component

created previously.

When this event occurs (something you will implement later in this exercise), it
will run our handler. Do this by updating the <ColorList> control reference in
the render() method:

<ColorList colors={ this.state.colors }
 onRemoveColor={ this._removeColor }/>

viii. Add the following method ot the ReactWebPartDemo class to implement the
event handler. This will create a new collection of colors that include all the
original colors, except the one included in the onRemoveColor callback:

7. Test the project:

i. Start the local web server using the provided gulp serve task:

gulp serve

ii. The SharePoint Framework's gulp serve task will build the project, start a local
web server and launch a browser open to the local SharePoint Workbench.

iii. Add the web part to the workbench. Notice our list of three colors is rendered
up exactly as we would expect.

private _removeColor = (colorToRemove: IColor): void => {
 const newColors = this.state.colors.filter(color => color != colorToRem
 this.setState({ colors: newColors });
}

09/05/2019 sp-dev-training-spfx-react-fabric/Lab.md at master · SharePoint/sp-dev-training-spfx-react-fabric

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Lab.md 15/15

iv. Select the delete button for one of the colors. Notice the color is removed
from the list.

That is because selecting the button raised an event on the ColorList
component. The ReactWebPartDemo component handles this event by
removing the color from the existing collection of colors in the current state
and then sets this new collection on the state.

That action triggers React to re-render the component which results in a list of
colors missing the one that was removed.

v. Close the browser and stop the local web server by pressing CTRL + C in the
command prompt.

https://github.com/SharePoint/sp-dev-training-spfx-react-fabric/blob/master/Images/ex02-testing-01.png

